High Resolution Pursuit for Feature Extraction

نویسندگان

  • Seema Jaggi
  • William C. Karl
چکیده

Recently, adaptive approximation techniques have become popular for obtaining parsimonious representations of large classes of signals. These methods include method of frames, matching pursuit, and, most recently, basis pursuit. In this work, high resolution pursuit (HRP) is developed as an alternative to existing function approximation techniques. Existing techniques do not always efficiently yield representations which are sparse and physically interpretable. HRP is an enhanced version of the matching pursuit algorithm and overcomes the shortcomings of the traditional matching pursuit algorithm by emphasizing local fit over global fit at each stage. Further, the HRP algorithm has the same order of complexity as matching pursuit. In this paper, the HRP algorithm is

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

انجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی

Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...

متن کامل

Multiscale geometric feature extraction and object recognition

This thesis describes a new adaptive approximation technique called high resolution pursuit (HRP), and demonstrates how HRP can be used to extract features that are suitable for object recognition. Recently, adaptive approximation techniques have become popular for obtaining representations of large classes of signals. These techniques include method of frames, matching pursuit, and basis pursu...

متن کامل

Functional dissipation microarrays for classification

In this article, we describe a new method of extracting information from signals, called functional dissipation, that proves to be very effective for enhancing classification of high resolution, texture-rich data. Our algorithm bypasses to some extent the need to have very specialized feature extraction techniques, and can potentially be used as an intermediate, feature enhancement step in any ...

متن کامل

Dissipative functional microarrays for classification

In this article, we describe a new method of extracting information from signals, called functional dissipation, that proves to be surprisingly effective for enhancing classification of high resolution, texturerich data. Our algorithm bypasses to some extent the need to have very specialized feature extraction techniques, and can potentially be used as an intermediate, feature enhancement step ...

متن کامل

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996